Das negativ geladene Elektron des Wasserstoffatoms wird durch die anziehende Coulomb-Kraft des positiv geladenen Atomkerns zu einer Kreisbewegung veranlasst. Die Coulomb-Kraft ist hier also Zentripetalkraft.
m v2 r |
= | e2 4 π ε0 r2 |
m ... Masse des Elektrons
v ... Geschwindigkeit des Elektrons
r ... Bahnradius
e ... Elementarladung
ε0 ... elektrische Feldkonstante
Allerdings sind nur bestimmte Bahnradien erlaubt, nämlich solche, bei denen der Bahndrehimpuls ein ganzzahliges Vielfaches von h / (2 π) ist.
r m v | = | n · | h 2 π |
r ... Bahnradius
m ... Masse des Elektrons
v ... Geschwindigkeit des Elektrons
n ... Hauptquantenzahl (n = 1, 2, 3, ...)
h ... Plancksches Wirkungsquantum
Die Bohrsche Quantenbedingung erscheint plausibel, wenn man von der Vorstellung einer Materiewelle (De-Broglie-Welle) ausgeht: Dem Elektron entspricht eine Welle der Wellenlänge λ = h / (m v). Damit sich diese Welle nicht selbst auslöscht, muss der Umfang der Elektronenbahn ein ganzzahliges Vielfaches der Wellenlänge sein. Es gilt also 2 r π = n h / (m v), woraus die oben erwähnte Quantenbedingung folgt.
Löst man die zweite Gleichung nach v auf und setzt man das Ergebnis in die erste Gleichung ein, so erhält man folgendes Resultat für die möglichen Radien:
r | = | h2 ε0 m e2 π |
· n2 |
h ... Plancksches Wirkungsquantum
ε0 ... elektrische Feldkonstante
m ... Masse des Elektrons
e ... Elementarladung
n ... Hauptquantenzahl (n = 1, 2, 3, ...)
Mit Hilfe des Ansatzes E = Epot + Ekin = − e2 / (4 π ε0 r) + (m / 2) v2 erhält man daraus:
E | = | − | m e4 8 ε02 h2 |
· | 1 n2 |
m ... Masse des Elektrons
e ... Elementarladung
ε0 ... elektrische Feldkonstante
h ... Plancksches Wirkungsquantum
n ... Hauptquantenzahl (n = 1, 2, 3, ...)
Streng genommen muss man dieses Ergebnis noch ein wenig korrigieren. Die Masse des Atomkerns ist zwar viel größer als die des Elektrons, aber nicht unendlich groß. Elektron und Atomkern kreisen um ihren gemeinsamen Schwerpunkt, der nicht genau mit dem Mittelpunkt des Atoms zusammenfällt. Um dies zu berücksichtigen, muss man in der letzten Formel die Elektronenmasse m durch die so genannte reduzierte Masse m' ersetzen:
m' | = | mK m mK + m |
m ... Masse des Elektrons
mK ... Masse des Atomkerns
URL: https://www.walter-fendt.de/html5/phde/bohrmodel_math_de.htm
Walter Fendt, 29. Mai 1999
Letzte Änderung: 30. März 2016